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Abstract. We study the attractors in an infinite-range Ising spin-glass model with determinis- 
tic dynamics where the interactions have asymmetry, specified by a parameter k. We find 
a duality relation between the attractors for models with asymmetry parameters k and I l k .  
The attractors are fixed points or limit cycles of short length, except for k = 1, at which 
the average cycle length diverges, reminiscent of a phase transition, and the model has 
many similarities to the random map model, as well as to the infinite-range symmetric spin 
glass in thermal equilibrium, including the fact that a few attractors dominate the weight. 
The extent of this dominance varies from sample to sample and so is given by a non-trivial 
probability distribution, n( Y), which we corrpute numerically. 

1. Introduction 

There has recently been a growing interest in the properties of Ising systems with 
asymmetric interaction bonds (Hertz et a1 1987, Crisanti and Sompolinsky 1987). This 
was mainly motivated by the study of neural network models (Little 1974, Hopfield 
1982, Amit et a1 1987) in which the dynamics of the network is represented as a flow 
in the space of Ising spin configurations. When the synaptic junctions between two 
neurons are symmetric, i.e. J,, = J J I ,  this flow can be described as a relaxation of a 
global energy function. This leads to an energy landscape of local minima (fixed 
points) in configuration space surrounded by valleys (basins of attraction). Since in 
biological systems JU # A,, it is of interest to investigate the effect of such an asymmetry 
on the dynamical evolution of the spin configurations. As soon as the asymmetry 
becomes non-zero there is no longer a monotonically decreasing energy, so limit cycles 
occur as well as fixed points. For parallel dynamics this happens also in the symmetric 
case, as explained below. In principle, chaotic behaviour can also appear. Since the 
number of states in the configuration space is finite (for a finite number of spins) all 
cycles have a finite length, but extremely long cycles would appear chaotic on any 
reasonable timescale. From the point of view of dynamical systems theory, these are 
therefore interesting models, having many degrees of freedom, in which to study the 
nature of the attractors. 

In the present paper, we study the structure of flows in configuration space in an 
asymmetric spin-glass model with deterministic dynamics. We consider a system of N 
spins, fully connected by an interaction of the form 

J . .  = Js.+ WA 
U U IJ 
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2776 H Gutjireund, J D Reger and A P Young 

where J $ = J ;  and J $ =  -J;. The elements of the symmetric and antisymmetric 
matrices, J s  and J A ,  are random independent Gaussian variables with zero mean and 
mean square equal to J 2 / [  N (  1 + k2)]. The parameter k is a measure of the asymmetry. 
For k = 0 the system reduces to the ordinary symmetric infinite-range Sherrington- 
Kirkpatrick (1975) model, and the k = a3 limit yields a totally antisymmetric interaction. 
The case of k = 1 corresponds to a fully asymmetric model in which the values of Jll 
and Ai are uncorrelated. For all other values of k there is a finite correlation between 
the interaction in the two directions 

J 2  1 - k 2  
( J . J . )  = - - 

N 1 + k 2  U Jl  

where (. . .) denotes an average over the Jij .  
Our analysis is restricted to the following two types of dynamics. 
(a) Parallel dynamics. All the spins are updated simultaneously at discrete time 

steps. The ‘new’ values S( t + 1) are determined by the ‘old’ ones, S (  t ) ,  through 

where the Ising spins S i ( t )  take values =tl. 
(b) Sequential dynamics. The spins are updated one after the other in a fixed 

order, which does not change from one round of updating the whole system to the 
next. If Si(t) is the configuration obtained after a sweep through the whole system 
has been completed, then the values Si(  t + 1) after the next round of updating are 
given by 

The index j now determines the order of updating. 
These two types of dynamics are deterministic, which means that every initial 

configuration evolves to a definite attractor, which can be either a single stationary 
configuration (fixed point) or a periodic repetition of 1 configurations (cycle of length 
1). Thus, the dynamical process divides the configuration space into separate basins 
of attraction. 

Let us define a weight of the sth basins of attraction as 

w, = R,/2N (1.5) 

where a, is the total number of initial configurations which flow to the sth attractor. 
Note that we do not weight the states by any factor involving their energy, as one 
would do in statistical mechanics. A quantity of interest, which characterises the 
structure of the ‘multivalley’ landscape of the basins of attraction, is 

Y‘C w: 
S 

If Y+O as N + m ,  this means that in the thermodynamic limit the landscape is 
dominated by increasingly many basins with weights which become smaller and smaller. 
On the other hand, if Y remains finite as N + CO, it means that there are a few large 
basins of attraction which cover almost the whole configuration space. Another 
question of interest is if Y is independent of the particular realisation of the Jll as 
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N+co, i.e. if Y is self-averaging, or if it fluctuates from sample to sample. This 
happens if ( Y’) - ( Y)* # 0 as N + CO. In this case, the entire information on the statistics 
of the sizes of the basins of attraction is contained in II( Y ) ,  the probability distribution 
of Y. 

These properties have been studied recently for several systems of interest in physics, 
biology, optimisation and mathematics. Let us mention three examples. 

(i) The mean field theory of an infinite-range spin glass (MCzard et a1 1984). This 
system is characterised by the existence of a large number (infinite when N + CO) of 
almost degenerate equilibrium states associated with free energy valleys separated by 
free energy barriers which become infinitely high in the thermodynamic limit. To each 
equilibrium state one can assign a weight W, exp(-F,/ T ) ,  where F, is the free energy 
of the state. 

(ii) The random map model (Derrida and Flyvbjerg 1987a) and the Kauffman 
model (Derrida and Flyvbjerg 1986). In this model the dynamical flow in configuration 
space is determined by a random mapping which uniquely assigns to each configuration 
its immediate successor. The interest in this model is twofold. First, many of the 
statistical properties of the basins of attraction and of the sizes of the attractors are 
known analytically. Second, this model is a limiting case of a class of Kauffman models 
which have been proposed and studied in the context of models for prebiotic evolution 
(Kauffman 1969, 1984). In the Kauffman models Si (?  + 1) is determined by a random 
Boolean function of the values of Sj( t )  on K randomly chosen sites. The random-map 
model is obtained when K + CO. 

(iii) Random breaking of intervals (Derrida and Flyvbjerg 1987b). This is another 
model in which a definite algorithm determines the breaking of a system into an infinite 
number of separate pieces. The weights are in this case defined as the lengths of the 
broken intervals. This model is conceptually simple, and it was studied recently to 
demonstrate that it has many striking similarities with the other two models (Derrida 
and Flyvbjerg 1987b). 

Although these models appear to be very different, they have many common features. 
In all of them, the phase space is divided into infinitely many valleys, but the weights 
of the largest valleys remain finite as N + CO, and they fluctuate from sample to sample. 
Moreover, the probability distribution 11( Y )  shows some ‘universal’ features which 
are found in the three models. 

In the present paper we demonstrate that the asymmetric spin glass with determinis- 
tic dynamics and k = 1 falls into the same class of models, and we show how these 
unique properties build up when k +  1 from both sides. We study the number and 
size of the attractors for arbitrary k and obtain an interesting ‘duality’ relation between 
the properties of the attractors for asymmetry factors k and 1/ k. Perhaps surprisingly, 
the model is not very chaotic, the dominant attractors are fixed points or short cycles 
(of length 2 or 4), except for k = 1 where the average cycle length diverges. 

Our analysis is based on tracing the flow of all the configurations in a small system 
(up to N = 16). In § 2 we explain the method and demonstrate that one can derive 
reliable conclusions from the analysis of small systems. In § 3 we discuss the effect 
of the asymmetry parameter k on the lengths of the attractors and on the sizes and 
numbers of their basins of attraction, and we conclude that k = 1 is a unique transition 
point. In § 4 we study the statistical properties of the distribution function 11( Y )  and 
of its moments in the case of k = 1, and compare the results with the models mentioned 
above. Our results are summarised in § 5 and some technical details are collected in 
the appendices. 
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2. Analysis of small systems 

We study the statistical properties of the dynamical landscape of the model defined 
in the introduction by analysing the evolution of every configuration and computing 
all the attractors and their basins of attraction for each sample. We can do this for 
N G  16. We first generate the interaction matrix defined in equation (1.1) and then 
compute for each configuration its immediate successor (obtained after one time step 
in parallel dynamics or after updating all the spins in sequential dynamics). The 2 N  
values of the 'next-state' configurations define the dynamical structure of the configur- 
ation space. This structure can be depicted graphically by points representing the 
configuration, connected by arrows indicating the transitions. A typical example is 
shown in figure 1. Each cluster of points defines a basin of attraction. By analysing 
the structure implied by such 'next-state' vectors we can compute the number and size 
of the attractors and of their basins. An outline of the algorithm which does this is 
given in appendix 2.  To obtain good statistics we sample a large number of different 
realisations of the Jo.  We also calculate the weights of the basins of attraction defined 
in equation ( 1 3 ,  their moments 

Yn=C w: 

their corresponding averages 

and the moments (Y:) defined by 

(2.la) 

(2 . lb)  

(2 . lc )  

By convention Y without a subscript will mean Yz .  Calculating Y for many samples 
also allows us to obtain directly the probability distribution n( Y ) .  

6 
Figure 1. Example of the phase space for N = 5 spins, obtained by parallel dynamics for 
asymmetry parameter k = 1.0. There are four basins of attraction. The attractors (shaded) 
are: two fixed points, one 2-cycle and one 4-cycle. 
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To calculate these quantities for large systems one has to apply a stochastic 
approach. Fcx ehample, Y, can be obtained by counting the number of times that, in 
a given sample, n randomly chosen initial configurations fall onto the same attractor. 
This has then to be averaged over many samples to get ( YH). The second moment 
(Y’)  can be computed as the average number of times that, out of four configurations 
chosen at random, two will flow to attractor A and the other two to a different attractor 
B. These methods become very costly when n increases and have been used previously 
to calculate only the lowest moments (Derrida and Flyvbjerg 1986). It does not seem 
feasible to use them to compute very high moments or quantities such as the total 
number of attractors. This is the reason why we decided to use exhaustive enumeration 
of all trajectories in configuration space for small systems. 

Of course the question arises as to whether the results obtained for systems of size 
N s 16 can be used to derive the behaviour in the thermodynamic limit. It seems that 
this is indeed the case as far as the number and length of the attractors is concerned. 
To demonstrate this, we present in § 2.1 numerical results for the number of fixed 
points and compare them with the known analytical values. For the other quantities 
studied in this paper the situation is somewhat different. In the random map model 
all the known features of an infinite system are quantitatively reproduced already for 
N = 12. This is shown in 0 2.2. In our model at k = 1 the analysis of small systems 
reproduces the qualitative features of large systems and allows us to make analogies 
with other models and to emphasise the distinction from the behaviour for k different 
from 1. However, the calculated quantities themselves do not yet converge to their 
thermodynamic limit. This will be discussed in 0 4. 

2.1. The number ofJixed points 

A stationary configuration {Si}, stable to a single spin flip, satisfies the condition 

i = 1 , 2  ,..., N. c JUSj = Aisi 
i 

Ai > 0 

The average number of configurations which satisfy the condition can be calculated 
from 

(NI ( k)) = (Tr 1 dhi 8 (E JUSj - hisi  
o i  j 

(2.3) 

where the trace is taken over the spins. Note that the condition (2.2) does not depend 
on the type of dynamics used. Thus, the number of fixed points will be the same for 
both types of dynamics considered here and also for random sequential updating. The 
right-hand side of equation (2.3) was first calculated by Tanaka and Edwards (1980) 
for the symmetric case, and their calculation can easily be extended to the asymmetric 
Jij given by equation (1.1) (see appendix 1). Similar results were also obtained by 
Sompolinsky (1987) and Bray (1987). For large N, the result can be written in the form 

( N , ( k ) ) =  4 k )  e x P ( ~ ~ , ( k ) ) [ 1 + 0 ( 1 / N ) l  (2.4) 

where 

2( 1 + k2) 
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and U*  is defined by the equation 

( 1  - k 2 )  
O * = (  T (  1 + k 2 )  )1’2exp( - 2 ( l + k 2 )  ( 1 - k 2 )  u*’)(l+erf[( 2( 1 + k 2 )  )1 ’2u*]} - ’  (2.6) 

2 ( 1 - k 2 )  

where erf denotes the error function. An expression for the coefficient A( k )  is given 
by equation ( A l . l l )  in appendix 1 .  Throughout this paper, when we discuss attractors 
of a given length, the subscripts on a( k )  and N (  k )  refer to the length of the attractor 
and a , ( k )  will always be the coefficient of N in the exponent for the corresponding 
( N i ( k ) ) .  Where the subscript is ‘tot’ we are referring to the total number of attractors. 

We have calculated the number of fixed points for even values of N between N = 4 
and N = 16. In figure 2 we plot the results for k = 0 and k = 0.5. The numbers for the 
largest sizes were obtained by averaging over several hundred samples and the smaller 
ones over several thousands. One observes that even for the small systems the results 
fall close to a straight line. From these plots we can derive values of the exponent 
a , ( k )  and the coefficient A ( k ) .  For example, the exact values of A ( k )  for k = O  and 
k = 0 . 5  are 1.051 and 1.023, respectively. We find 1.065 and 1.015. Our numerical 
values of the exponent are compared with the theoretical curve for a , ( k )  in figure 3. 
The agreement is evidently very good. 

Figure 2. Logarithm of the average number of fixed points, (N , ) ,  plotted against system 
size for asymmetry parameter values k = 0.0 (U) and k = 0.5 (U). From the slopes we find 
cr,(k=0)=0.198 and cu , (k=0 .5 )  =0.141. 

Of particular interest is the case k = 1 .  The integrals in appendix 1 can be evaluated 
exactly, without needing the steepest descents approximation, and one finds 

( N , ( k = 1 ) ) = 1  (2 .7)  
for all sizes. This result is confirmed by our numerical calculations. An alternative 
derivation of it, and a discussion of its significance, will be given in 0 3.3. 

It is interesting to ask whether ( N , ( k ) )  could be dominated by a few rare samples, 
in which case self-averaging would not occur, i.e. (log NI( k ) )  # log(( N I (  k ) ) )  even for 
N + CO. To check this possibility we computed (log N , ( k ) )  as well as log((N,(k))). We 
find that they agree well with each other, e.g. for k = 0 and the largest sizes the difference 
is less than 1%. As k - ,  1, where NI is small, the difference is bigger but still decreases 
with increasing system size, so one has to go to larger system sizes to see the self- 
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h 

Figure 3. Numerical results for a ,  ( W )  as a function of the asymmetry parameter k, 
compared with the theoretical curve obtained from equation (2.5) of the text. 

averaging. We conclude that the number of fixed points is self-averaging for 0 s k < 1. 
It cannot be self-averaging for k precisely equal to 1 because (NI) = 1 from equation 
(2.7), whereas each sample must have an even number of fixed points because of the 
symmetry of the Hamiltonian under the transformation Si + -Si, for all i. 

2.2. The random map model 

In this model phase space is composed of M states and the dynamics is just a random 
map: for each state one chooses at random another state to be its immediate successor. 
In this model, one can compute exactly the quantities (Y,) and the moments (YT).  
We have calculated several of these quantities for different system sizes M = 2N. The 
results are given in table 1. For N S  12, they compare very well with the exact values. 

Another quantity which can be easily calculated is the probability distribution, 
I'I( Y ) .  In figure 4 we show the result for N = 12 (averaged over 36 000 samples) and 
compare it with the curve obtained by Derrida and Flyvbjerg (1987a) by an indirect 
and more elaborate method. Again the agreement is excellent. 

We presented these results to illustrate that there is a model in which small sizes 
describe well the behaviour for N + CO. We shall see that this is not true to the same 

Table 1. Comparison of the exact values (as M -+ CO) of various moments of the weights 
in the random map model with the numerical results for different sizes M = 2". The number 
of samples is shown in brackets. 

Exact N = 8  N=lO N = 1 2  N = 1 4  N = 1 6  
N + c o  (80 000) (51 000) (36 000) (26 000) (20 000) 

( Y2) 0.666 0.680 0.675 0.669 0.668 0.669 
( Y3) 0.533 0.550 0.545 0.537 0.535 0.537 
( Y4) 0.457 0.476 0.470 0.461 0.459 0.461 
( y:, 0.495 0.514 0.507 0.499 0.497 0.499 
( y:, 0.398 0.419 0.412 0.403 0.400 0.402 
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Figure 4. Histogram of the numerical results for the probability distribution II( Y) in the 
random map model. The system size is N = 12. The broken curve is from Derrida and 
Flyvbjerg (1987a). 

extent for the asymmetric spin glass at k = 1, although both models have similar 
behaviour in the N + 00 limit. 

3. Structure of attractors as a function of asymmetry parameter 

In this section we discuss how the number of attractors and the corresponding cycle 
length varies with the asymmetry parameter k. 

The number of fixed points, which is of course the same for sequential and parallel 
dynamics, has already been discussed in 0 2.1. For 0 < k < 1, (NI( k ) )  increases exponen- 
tially with N, while for k = 1, (N,(l))  = 1, and finally, if k >  1, ( N , ( k ) )  decreases 
exponentially with N. The variation of a, with k was shown in figure 3. Now we 
discuss cycles for which it is necessary to distinguish between sequential and parallel 
dynamics. First of all we shall describe our results for sequential dynamics. 

3.1. Sequential dynamics 

It is well known that there are only fixed points for k = 0. In the opposite extreme, 
for k =CO, we can show that there are only limit cycles of length 2 by the following 
argument. The dynamics of the system is governed by equation (1.4). Let us modify 
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this, replacing J ,  by J b ,  where 

J : J  = J ,  i > j  

J L = - J ,  i < j  

and replacing SI( t )  by S:(  t )  where 

s:(t) = SI ( t )  t even 

S : ( t ) = - S , ( t )  t odd. 

Then equation (1.4) has precisely the same form as before, but is written in terms of 
the primed variables, i.e. 

(3.5) 

Thus the dynamics for the sets of interactions J and J’ are the same if we invert the 
spins at every alternate time when using J’. The transformation from J to J’ effectively 
interchanges the two terms in equation (1 .1 )  and thus changes an interaction with an 
asymmetry parameter k to one with l / k .  We therefore see the following ‘duality’ 
relation between asymmetry parameters k and 1 /  k :  for every attractor with a given 
set of JU (which has asymmetry parameter k )  there is a corresponding attractor for 
the set of J ;  (which has asymmetry parameter l / k ) .  Note that this relation holds 
separately for each set of interactions provided one updates with the J matrix and the 
J’ matrix in the same order. Since the order of updating does not affect averaged 
quantities the duality property holds statistically even when the order of updating is 
different in the two cases. As a result of duality it follows, for example, that 

(fiT4(k)) = i ( N , ( l / k ) )  (3.6) 

where the tilde indicates that we only consider 2-cycles where the two states are inverses 
of each other, and the factor of 4 is due to the fact that if state A is a fixed point, 
which implies that -A  is also a fixed point, they give the same 2-cycle under the 
duality transformation. In equation (3.6) and for the rest of this paper the superscript 
s refers to sequential dynamics. Since the number of attractors varies exponentially 
with N, one has 

a ” ; ( k ) = a , ( l / k )  (3.7) 

and similar results can be derived for cycles of longer length. For k = CO there are only 
2-cycles since fixed points are the only attractors for k = 0. Because of the exponential 
dependence on N the total number of attractors (Ns,,) is just the number of those 
attractors with the largest a. Consequently, 

a s d k )  = aSot(l/k) = a , ( k )  O L k s l .  (3.8) 

To test out these predictions we plot in figure 5 our results for a , ( k )  and a“;( l /k)  
for 0 G k G 1 ,  obtained by fits for 4 s N G 16. The agreement is seen to be very good. 
Furthermore, it appears that the vast majority of attractors are fixed points for k < 1 ,  
and 2-cycles with states the inverses of each other for k >  1 .  To see this, we plot in 
figure 6( a )  the remaining number of attractors (including 2-cycles where the states are 
not inverses of each other) and compare with the total number in figure 6(  b) .  Note 
that the numbers in figure 6 ( a )  are much smaller than those in figure 6(b) and also 
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k 

Figure 5. Plot of a ; ( k )  (W and 0;; ( I l k )  (U) against k for sequential dynamics, together 
with the theoretical curve for a , ( k )  from equation (2.5). 

1 14 
16 

h 5 2  
“0 z ” 

1 

0 0.2 0.L 0.6 0.8 1.0 

h 

M.. 
* 

5 
10 

0 0 2  0 4  0 6  0 8  1 
k l l k + l )  

Figure 6. ( a )  Average number of attractors without the major contributions (N&) in 
sequential dynamics plotted against the asymmetry parameter k / ( k +  1). For k <  1 we 
subtracted the number of fixed points from the total number of attractors, and for k > 1 
the number of 2-cycles in which the states are inverses of each other (mirror states). ( b )  The 
average total number of attractors (N:ot) plotted against k / ( k +  1) for sequential dynamics, 
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that they increase slowly with N, probably less fast than exponential, though it is hard 
to rule out a small exponent. 

Data for k = 1 are shown in figure 7 from which one deduces that 

( Ntot) = CN + D k = l  (3.9) 

where C=O.17. This linear dependence on N is also found (Derrida and Flyvbjerg 
1987a) for the random map model, with C = 0.5. Indeed, we shall emphasise in § 3.3 
below that the spin glass with k = 1 is very similar, in many respects, to the random 
map model. 

We have shown that there are an exponentially large number of attractors, except 
for k = 1, which marks a phase transition where a qualitative change in the type of 
attractors takes place. For k < 1 there are mainly fixed points but for k > 1 there are 
mainly 2-cycles. This phase transition analogy can be pushed further by studying the 
average attractor size ( I )  defined by 

(3.10) 

where 1, is the length of the sth attractor. Note that this definition gives equal weight 
to all attractors. One could also weight them by their domain of attraction W,, i.e. 

( 1 ' )  = (F s = 1  WSlS) (3.11) 

but this was not computed. Figure 8 shows ( I )  against k / ( l  + k)  with sequential 
dynamics for different sizes. Clearly this is small until k approaches unity, where it 
becomes very large as N increases. Note that under the duality transformation k + 1/ k, 
then x = k / ( l  + k) goes to 1 -x, so we expect a symmetry about x = b, which is indeed 
observed in figure 8. For k = 1 it appears that ln(1) = a + bN where b = 0.072 as shown 
in figure 9. Note that for the random map model one has (Derrida and Flyvbjerg 
1987a) the same N dependence but with b = 4 In 2. 

0 4 8 12 16 2 
N 

Figure 7. The average total number of attractors ( N , o , )  plotted against N for parallel (m) 
and sequential (+) dynamics. The slopes are 0.41 and 0.17, respectively. 
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3 0.2 0.4 0.6 0.8 1 

k l  l k t l l  

Figure 8. The average length of the attractors ( I )  against k / (  1 + k )  with sequential dynamics 
for different sizes 

- 2 
0 4 8 12 16 

N 

Figure 9. System size dependence of the average length of the attractors ( I )  for both parallel 
(M) and sequential (+) dynamics. The slopes are 0.144 and 0.072, respectively. 

3.2. Parallel dynamics 

For parallel dynamics it has been shown (Goles-Chacc et a1 1985) that there are only 
fixed points and 2-cycles for k = 0. The technique can easily be generalised to show 
that there are only 4-cycles for k = CO. Let us define an 'energy' E (  t )  by 

(3.12) 

Computing the difference E (  t + 1) - E (  t )  one immediately finds, for Jv symmetric 
( k  = 0), that 

(3.13) 

Hence either S,( t + 1) = S,( t - 1) for all i, which means one is on a fixed point or 2-cycle, 
or E ( t + l ) - E ( t ) < O ,  since S , ( t+ l )=sgn(E  Jl,SJ(t)). Since the energy is bounded, it 

E ( t ) = - JvS, ( t ) SJ ( t - 1 ) . 
( b J )  

E ( t + 1 ) - E ( t ) = -1 [ S, ( t + 1 ) - SI ( t - 1 ) ] 1 JvSJ ( t ) . 
I J 
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must eventually stop decreasing so the system must end up on a fixed point or 2-cycle. 
If, on the other hand, Jv is antisymmetric (k  = CO), one obtains 

(3.14) 

instead of equation (3.13). Thus, either E (  t )  decreases or S, ( t  + 1) = -S , ( t  - 1) for all 
i. Hence, the only attractors are 4-cycles where the first and third states are inverses 
of each other, as are the second and fourth states, i.e. one has the sequence of states 

For sequential dynamics we proved above a very general duality relation, which 
leads, for example, to equations (3.7) and (3.8). Unfortunately we have been unable 
to find as general a result for parallel dynamics, although the above discussion shows 
that there are analogous results connecting k = 0 with k = CO. Nonetheless, analytic 
calculations (Bray and Young 1987), making some plausible assumptions, show that, 
for arbitrary k, there is a simple relation between the number of 4-cycles with first and 
third states inverted and the number of 2-cycles for asymmetry parameter 1/ k, namely 

(3.15) 

which is clearly analogous to equation (3.7) for sequential dynamics. Here and from 
now on, the superscript p refers to parallel dynamics. The work of Bray and Young 
(1987) and our numerical results suggest that these 4-cycles dominate for k > 1 and 
the 2-cycles dominate for k < 1. If this is so then it follows that 

@ot(k) = &,(l/k).  (3.16) 

Thus, there seems to be a duality for parallel dynamics similar to the one we derived 
for sequential dynamics, although we have been unable to give a general proof of it. 

One can also show (Bray and Young 1987) that the number of 2-cycles is connected 
to the number of fixed points by the relation 

aK(k) = 2 ~ t l ( k )  O s k s l  (3.17) 

which, combined with equation (3.15) and the remarks leading to equation (3.16), gives 

a!ot(k) = a?o,(l/k) = 2 a , ( k ) .  (3.18) 

Equations (3.8) and (3.18) give the surprising result that the total number of attractors 
for any value of k, and for both sequential and parallel dynamics, is given by a , (k )  
with k in the range Os k s  1. 

These predictions are well confirmed by our results. Figure 10 shows that a!(k) 
and 6 ? ( l / k )  agree well with the theoretical value of 2a,(k).  The vast majority of 
attractors are indeed 2-cycles, for O <  k < 1, and 4-cycles with first and third states 
inverted for k > 1, as can be seen from figure 11 ( a )  which plots the number of attractors 
with these cycles (and for k >  1 also the fixed points) removed. As for sequential 
dynamics the number increases slowly with N, probably less fast than exponential. 
Figure l l ( b )  shows the total number of attractors, which is clearly very much larger 
and is increasing much more rapidly with N. At k = 1 we have ( Np0J = C ’ N  + D’, 
where C ’ -  0.41 (see figure 7), which is reasonably close to the random map value of 
i. In fact, since there are deviations from the straight line fit in figure 7 at small sizes, 
we cannot rule out the possibility that C’ is precisely equal to the random map value. 
We do not understand why there should be such a close correspondence between the 
random map model and the asymmetric spin glass with k = 1. The logarithm of the 

E (  t + 1)  - E (  t )  = -2 [ S I (  t + 1) + S,( t - 111 c JUS,( t )  
I J 

A +  B + - A +  - B  + A. 

6:( 1/ k) = a!( k)  



2788 H Gutfreund, J D Reger and A P Young 

I 
0 0.2 0.4 0.6 0.8 1 0  

k 

Figure 10. Plots of a g ( k )  (m) and &?,(l/k) against k for parallel dynamics, together with 
the theoretical curve for 2 a , ( k )  

“i io) A N.4 
0 0  
* 12 

14 
0 16 

0 0.2 0.4 0 6  0.8 1. 
k l ( k + l )  

0 0.2 0.4 0.8 1.0 
k / l k + l )  

Figure 11. ( a )  Average number of attractors without the major contributions, (NEther), in 
parallel dynamics plotted against the asymmetry parameter k / ( k +  1). For k < 1 we subtrac- 
ted the number of fixed points and 2-cycles from the total number of attractors, and for 
k >  1 the number of 4-cycles in which the first and third states are inverses of each other 
(mirror states). ( b )  The average total number of attractors (N?,,) plotted against k / ( k +  1) 
for parallel dynamics. 
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Figure 12. The average length of the attractors (I) against k/( 1 + k )  with parallel dynamics 
for different sizes. 

average attractor size, shown in figure 9 ,  varies as a + b N  with bZ0 .144 .  The N 
dependence is again the same as for the random map model (Derrida and Flyvbjerg 
1987a) and our results for sequential dynamics given above, but the value of b is 
different. The average attractor size, ( 1 ) ,  is plotted in figure 12. Like the corresponding 
data for sequential dynamics, presented in figure 8, this shows evidence for a phase 
transition at k = 1 .  

3.3. Special behaviour at k = 1 

We now discuss the similarity between the spin-glass model at k = 1 and the random 
map model. They both have the property that a configuration at time t goes with equal 
probability to any other configuration at time t + 1 .  For the random map model, this 
follows trivially from the way the model is defined. To see that this is also the case 
for the spin-glass model, consider two configurations, { S i }  and {Sp}. The probability 
that {Sp} goes to { S i }  in one time step is, in parallel dynamics, given by 

(3.19) 

where 0 is the step function. One can make a gauge transformation 

where 
averaging over Jv is equivalent to averaging over J ; .  Thus 

J. .  1J = &.J!. 1 ?I (3.20) 
= i l .  For k = 1, and only for this value of k, Jv and Jv are uncorrelated so 

P(s,so)=(y.(.is.T:’””)) J ’  . (3.21) 

Now eiSi = Si can be any configuration. Thus P ( S ,  So) = 2TN for any S. The same 
argument can be applied in the case of sequential dynamics, when 

(3.22) 

except that now the interaction with j > i are gauged as J; = eiJii, and the rest as 
J!. = &.&.J ... 

11 * J tl 
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Since P( S, So) = 2-N for any S, one immediately finds that there is, on the average, 
one fixed point, because 

c P(S0, SO) = 1. 
SO 

(3.23) 

Note, however, that this similarity does not imply that the two models are identical. 
Differences occur when one computes higher moments of the distribution of the quantity 
in equation (3.19). Such moments occur, for example, in the time evolution of the 
overlap of two initial configurations. Still there are some striking similarities between 
these models. For example the total number of attractors varies as (NP,,) = C N  where 
C = 4 for the random map model and C = 0.41 for the spin glass with parallel dynamics. 
As discussed above, it is possible that the values of C are actually the same. We do 
not understand why the behaviour of these two models is so close. 

To summarise the results of § 3, we have presented both numerical and analytic 
results which show that the number of attractors increases exponentially with N except 
for k = 1 where the number is proportional to N. The value k = 1 marks a transition 
at which there is a change in the nature of the dominant attractors. Only at this value 
of k is there a strong analogy with the other models discussed in the introduction. In 
the next section we explore further the connections between the spin glass with k = 1 
and these other models. 

4. The sizes of the basins of attraction 

The statistical properties of the sizes of the basins of attraction are best characterised 
by the moments of their weights (Y,,) and by their fluctuations from sample to sample. 
These properties were first investigated for the infinite-range spin glass (MCzard et al 
1984). Let us summarise the picture which emerges there. 

The spin-glass phase is characterised by the existence of infinitely many equilibrium 
states (as N + 00). A state s may be described by the local magnetisations ms. One 
can define an overlap between two equilibrium states, s and S I ,  as 

For any given value of q, where 0 < q < 1, one can divide the space of all the equilibrium 
states into clusters so that two states in the clusters have an overlap q’> q and the 
overlap between states in different clusters is smaller than q. The weight of cluster I 
is defined as 

where P, is the Boltzmann weight of state s. The probability that two states have an 
overlap larger than q is 

Even for N + 00 this quantity depends on the actual realisation of the Jij. Furthermore, 
Y remains finite in this limit so the phase space is dominated by a small number of 
clusters of finite weight. It was shown (MCzard et a1 1984) that the probability 
distribution ll( Y )  has a universal property; it depends on the temperature, the magnetic 
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field and the value of q only through the average ( Y ) .  The higher moments ( Y ” )  are 
just polynomials in Y. For example, 

( Y*)  = f(( Y )  + 2( Y)’) 

(Y3) = &(3( Y)+7( Y ) 2 +  5( Y)”. 

(4.4) 

(4.5) 

One can show directly (M6zard et al 1985) in the SK model or in the random energy 
model (Derrida and Toulouse 1985) that the quantities (Y,,) are also polynomials in 
( Y ) .  For example, 

( Y3) = i(( Y )  + ( Y)’) (4.6) 

(Y4)= i (2 (Y)+3(Y)2+(Y)3 ) .  (4.7) 

Derrida and Flyvbjerg (1987a) observed from numerical calculations on the 
Kauffman (1984) model for several small values of the parameter K that such relations 
are approximately satisfied in that model for finite values of N. The fact that this is 
not exact can be inferred from the random map model. Using the values in the first 
column of table 1, one sees, however, that the discrepancy is very small. For example, 
the difference between the two sides of equation (4.4) is 0.023. 

This similarity may come as a surprise. The mechanism of breaking up the phase 
space into separate ‘valleys’ in the SK model and the Kauffman models is different 
and so is the definition of the weights. Nevertheless, there are fundamental similarities 
in the nature of this multivalley structure. 

In view of the above, we have checked numerically if relations (4.4)-(4.7) are also 
satisfied in our model. Our results for N = 16 and parallel dynamics are summarised 
in figures 13(a)-(d). For k =  1, these relations are satisfied at least as well as in the 
random map model. In each case, the points representing the different values of k lie 
on a trajectory which approaches the theoretical line when k increases towards k = 1. 
When k increases further, the points retreat from the theoretical curve along the same 
line. This may be related to the duality property in the structure of the attractors 
discussed in § 3. For k = 1 we find that, although the different quantities (Y,)  and 
( Y ” )  have not yet saturated to their limiting values for N = 16, the proximity of the 
points to the theoretical curve does not depend much on N, as is demonstrated for 
parallel dynamics in figure 14 for relation (4.4). On the other hand, the size dependence 
for k # 1 is much stronger and the results move away from the full line as N varies 
from 4 to 16. The proximity to the theoretical line and the different size dependence 
indicates that as N +. CC the multivalley structure in the k = 1 case is very different from 
k #  1. 

Another feature observed by Derrida and Flyvbjerg (1987b), which is common to 
all the models considered by them, is the presence of singularities in the distribution 
function Il( Y )  at the points Y = l / n  where n = 2,3, .  . . . These singularities become 
weaker and weaker as n increases and it is very hard to see them in numerical 
calculations for n > 3. Their origin and nature has been discussed in great detail for 
the model of random breaking of intervals (Derrida and Flyvbjerg 1987b), but their 
occurrence seems to be much more general. Incidentally, the curves of U( Y) in M6zard 
et a1 (1984), which were calculated from the first seven moments, do not show these 
singularities, and they appear only in a more rigorous calculation (Derrida and 
Flyvbjerg 1987b). Although it is not clear if these singularities have any observable 
effects, they may be deeply related to the general nature of a multivalley structure 
dominated by valleys with finite weight. 
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Figure 14. A test of the relation ( Y2)=) ( (  Y)+2(  Y ) 2 )  for different sizes with parallel 
dynamics at k = 1. 

We have calculated the function n( Y )  in the model discussed in the present paper 
and investigated its k and size dependence. The results for k = 1, N = 16 are shown 
in figure 15 for parallel and sequential dynamics. The typical cusp-like singularities 
are clearly present. The behaviour is very different for k < 0.5. There I'I( Y )  is concen- 
trated around Y = 0 and the width narrows with increasing N, indicating that I'I( Y )  
will collapse into a 6 function as N + 00. For 0.5 < k < 1, we do find the cusp-like 
singularities, though there is also a strong N dependence and a significant shift of 
weight from higher to lower values of Y. This suggests that, for all k < 1, I'I( Y )  will 
collapse to a S function, though as k + 1 this happens much more slowly with increasing 
N. The situation seems to be different for k = 1. Although, even in this case we find 
a very slight shift in TI( Y )  from higher to lower values, we believe that this is due to 
the fact that, for N s  16, ( Y )  did not yet converge to its limiting value. This should 
be compared to the random map model ( 0  2.2), where we found that IT( Y) is already 
independent of size at N = 10. 

0.15 

0 0 2  04 0'6 0'8 1 0  
Y 

010 

0.05 

0 ( 

! 
I I 

Y 

Figure IS. The probability distribution n( Y )  for system size N = 16 and asymmetry 
parameter k = 1 with ( a )  sequential dynamics and ( b )  parallel dynamics. 
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To verify that ( Y )  actually converges to a finite limit as N increases, we have 
supplemented our analysis of small systems by applying the conventional method 
(mentioned in § 2) to calculate ( Y )  for larger systems. The N dependence of ( Y )  is 
shown in figure 16 for sequential dynamics. It seems fairly clear that ( Y )  is saturating 
to a value of about 0.45, for k = 1, but appears to vanish as N + CO for k = 0 and k = 0.5. 

+ 1 0  

-+ 0 5  
4 0  

0 0.1 0.2 0.3 
I IN  

Figure 16. Size dependence of ( Y )  for different asymmetry parameter values. For k = 1.0 ( Y )  
saturates to a value of about 0.45, whereas for k = O S  and k=O ( Y )  appears to tend to 
zero for N + CO. 

5. Conclusions 

We have studied in some detail the attractors of an asymmetric infinite-range Ising 
spin glass. Except for asymmetry parameter k = 1, the number of attractors increases 
exponentially with N and the dominant attractors are fixed points or limit cycles of 
short length, 2 or 4. At k = 1, however, the number of attractors is proportional to N 
and the average attractor size diverges, and a few attractors dominate. As a result, it 
is only for k = 1 that our model has a strong similarity to other models studied, such 
as the random map model and the infinite-range Ising spin glass with thermodynamic 
weighting of the attractors. The extent to which a few attractors dominate for k = 1 
varies from sample to sample and is characterised by the distribution II( Y ) .  As found 
for the other models (Derrida and Flyvbjerg 1987a, b)  II( Y )  has singularities at Y = 1/ n, 
n = 2,3 . . . . It appears, then, that the dominance of a few basins is typical, provided 
that the number of attractors does not increase exponentially with N. 
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Appendix 1 

Here we obtain the number of fixed points as a function of k following the lines of 
Tanaka and Edwards (1980). We start with equation (2.3), i.e. 

( N , ( k ) )  = (Tr [" n dAi S (c J0Sj - Aisi 
0 1  j 

and use an integral representation for the delta function, i.e. 

(Al . l )  

(A1.2) 

x exp( -i A,x,S, + i  [J",x,SJ + x,S,)  + J t ( x l S J  - xJS, ) ]  . 

Averaging over the Jq, as described below equation ( l . l ) ,  and making the replacement 
x ,  + x,S, (1 + k2) 

I ( h J )  >> 
J, A ,  + A,J / (  1 + k2) I/' one obtains 

(A1.3) 

(1-k2)  
x exp[ -i c A i x i  - f ( l+  k2-2 /N)  1 x: -~ (T x i ) ' ] .  

i i 2 N  

Note that for k = 1 the integrals decouple and are easily evaluated to give (N,(l))  = 1 
(see equation (2.7)) for all N. For k f  1, one introduces an auxiliary variable to 
decouple the last term in equation (A1.3), which leads, with a simple change of 
variables, to 

where 

f ( w )  =$02-ln I k ( w )  

and 

(A1.5) 

I ~ ( ~ )  = 1" e jo" dA exp{ - f x 2 + i  [ ( s ) " 2 w  - A ]  x } .  (A1.6) 
-E 

Performing the x integral in equation (A1.5), I k ( 0 )  becomes 

(A1.7) 

(A1.8) 



2796 H Gutfreund, J D Reger and A P Young 

where erf is the usual error function. Note that equation (A1.4) is exact, even for finite 
N, and can readily be evaluated numerically. For large N, one can do a steepest 
descent calculation with the result that 

(N, (k) )=  4 k )  exp(a l (k)N)[ l  + 0 ( 1 / N ) I  (A1.9) 

where 

a l ( k ) =  -iw*2+ln I k ( w * )  

and 

A(k) =exp[w*2/(1 + k2)]/Lf"(w*)]'/' 

where w*  is the solution of 

(Al.  10) 

(Al . l l )  

2(1-k2) (1-k2) w * ~ ) {  l+er f [ (  (1 - k2) ) ' : ' w * ] ] - ' .  (A1.12) 
= ( T(  1 + k')) ''* ( - 2 (  1 + k2)  2(1+ k2) 

These results were used in 9 2. The expression for a , ( k )  has also been derived by 
Sompolinsky (1987) and Bray (1987). Note that the error in the steepest descent 
formula, equation (A1.9) is small even for small sizes. For example, with k = 0, where 
a l ( 0 )  = 0.1992 and A(0) = 1.056, equation (A1.9) predicts (N,(O)) = 2.343 for N = 4, 
compared with the exact result (Nl(0)) = 2.396, obtained by doing the integral in 
equation (A1.4). 

Appendix 2 

Computing the size of the different attractors and their basins of attraction is fairly 
easy. The states have labels m which run consecutively from 1 to 2N, and each state 
has a 'basin number', n,, which indicates the basin the state belongs to, and is initially 
set to zero for all states. For each state one computes the label of the state that is 
generated from it by the dynamics. These form a 2N-dimensional array of 'next states'. 
This calculation is straightforward but turns out to be the most time-consuming part 
of the program. There is also a list of basin sizes, .Ri, initially set to zero, for each 
basin i. One then performs the following steps starting with each state in turn. 

Denote the label of the state by m and the number of basins that have already 
been found by i. Check whether state m has already been visited, by testing n,. If it 
has been visited before ( n ,  # 0) skip to state m + 1. If it has not ( n ,  = 0), then iterate 
the dynamics, labelling the states by basin number i + 1, until you reach a state which 
has been visited before, and so has a basin number n ZO. There are now two 
possibilities, either (a) or (b), as follows. 

(a) If n = i + 1, this is then a new basin, so two steps need to be done: 
(i)  use the number of distinct states which have been visited since starting from 

state m, as a first estimate of sZi+l ,  and 
(ii) determine the number of states on the ( i  + 1)th attractor: the state just reached 

must be on the attractor, so note it and iterate the dynamics again counting the number 
of states until you come back to it again. 

(b) If n < i + 1, an old basin has been reached again. Go back to state m and 
iterate the dynamics again but this time label the states by basin number n. Count the 
number of distinct states visited until you hit a state already labelled to be on attractor 
n and add this number to Cl,. 
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By the time that all states have been gone through in this way, each state is labelled 
by the number of the basin to which it belongs, and the size of each basin and its 
attractor have been determined. 
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